自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Thinkgamer博客

《推荐系统开发实战》作者,「搜索与推荐Wiki」公号负责人,CyanScikit科技创始人...

原创 Spark使用Libsvm格式数据构造LabeledPoint格错误:requirement failed:Index 2287 out of bounds for vector of size 27

背景 使用libsvm格式的数据构造LabeledPoint格式,例如我的libsvm格式数据如下(索引下标最大值为,3000): 790718 1:1 2:1 4:1 5:1 6:1 7:1 9:1 11:1 13:1 16:1 19:1 21:1 28:1 31:1 43:1 64:1 65:...

2019-11-29 10:29:22

阅读数 766

评论数 0

原创 NLP实战之基于TFIDF的文本相似度计算

TFIDF算法介绍 TF-IDF(Term Frequency–InverseDocument Frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力...

2019-11-27 20:14:01

阅读数 910

评论数 0

原创 常见的五种神经网络(4)-深度信念网络(上)篇之玻尔兹曼机和受限玻尔兹曼机

引言 常见的五种神经网络系列第三篇,主要介绍深度信念网络。内容分为上下两篇进行介绍,本文主要是深度信念网络(上)篇,主要介绍以下内容: 背景 玻尔兹曼机 受限玻尔兹曼机 该系列的其他文章: 常见的五种神经网络(1)-前馈神经网络 常见的五种神经网络(2)-卷积神经网络 常见的五种神经网络(3...

2019-11-26 14:32:04

阅读数 3393

评论数 3

原创 美团点评技术与算法文章汇总,设计算法、前后端、客户端、小程序等

这是一份福利贴,先看内容,再看获取方式。 算法文章汇总目录: 美团“猜你喜欢”深度学习排序模型实践 美团大脑:知识图片的建模方法及其应用 深度学习在美团搜索广告排序的应用实践 美团深度学习系统的工程实践 美团餐饮娱乐知识图谱——美团大脑揭秘 美团在O2O场景下的广告营销 美团外卖骑手背后的AI技...

2019-11-18 20:28:25

阅读数 1179

评论数 0

原创 机器学习中非常有名的理论或定理你知道几个?

转载请注明出处:http://blog.csdn.net/gamer_gyt 博主微博:http://weibo.com/234654758 Github:https://github.com/thinkgamer 公众号:搜索与推荐Wiki 个人网站:http://thinkgamer.gith...

2019-11-16 22:30:20

阅读数 3398

评论数 6

原创 TensorFlow的逻辑回归实现

打开微信扫一扫,关注微信公众号【数据与算法联盟】 转载请注明出处:http://blog.csdn.net/gamer_gyt 博主微博:http://weibo.com/234654758 Github:https://github.com/thinkgamer 逻辑...

2019-11-13 23:22:39

阅读数 802

评论数 0

原创 模型的独立学习方式

本篇文章主要介绍一些“模型独立的学习方式”,比如:集成学习、协同学习、自学习、多任务学习、迁移学习、终身学习、小样本学习、元学习等。

2019-11-12 20:53:23

阅读数 922

评论数 0

原创 【论文】文本相似度计算方法综述

概述 在信息爆炸时代,人们迫切希望从海量信息中获取与自身需要和兴趣吻合度高的内容,为了满足此需求,出现了多种技术,如:搜索引擎、推荐系统、问答系统、文档分类与聚类、文献查重等,而这些应用场景的关键技术之一就是文本相似度计算技术。因此了解文本相似度的计算方法是很有必要的。 文本相似度定义 文本相似度...

2019-11-07 15:55:25

阅读数 1858

评论数 1

原创 无监督学习中的无监督特征学习、聚类和密度估计

无监督学习(Unsupervised Learning)是指从无标签的数据中学习出一些有用的模式,无监督学习一般直接从原始数据进行学习,不借助人工标签和反馈等信息。典型的无监督学习问题可以分为以下几类:无监督特征学习、密度估计、聚类。

2019-11-05 10:58:36

阅读数 1304

评论数 0

提示
确定要删除当前文章?
取消 删除